3. Zegar C wskazuje godzinę 10:44:24. P F 4. Zegar D wskazuje godzinę 17:48:54. P F Wypełnia egzaminator Nr zadania 2.2. 3.1. Maks. liczba pkt. 3 1 Uzyskana liczba pkt. Więcej arkuszy znajdziesz na stronie: arkusze.pl Szybka nawigacja do zadania numer: 5 10 15 20 25 30 .Liczba \(\left (\sqrt[3]{16}\cdot 4^{-2} \right)^3\) jest równa A.\( 4^4 \) B.\( 4^{-4} \) C.\( 4^{-8} \) D.\( 4^{-12} \) BDodatnia liczba \(x\) stanowi \(70\%\) liczby \(y\). Wówczas A.\( y=\frac{13}{10}x \) B.\( y=\frac{7}{10}x \) C.\( y=\frac{10}{7}x \) D.\( y=\frac{10}{13}x \) CPrzedział \(\langle -1,3 \rangle\) jest opisany nierównością A.\( |x+1|\ge 2 \) B.\( |x+1|\le 2 \) C.\( |x-1|\le 2 \) D.\( |x-1|\ge 2 \) CWartość wyrażenia \(\log_2{20}-\log_2{5}\) jest równa A.\( \log_2{15} \) B.\( 2 \) C.\( 4 \) D.\( \log_2{25} \) BLiczba \((-3)\) jest miejscem zerowym funkcji \(f(x)=(2m-1)x+9\). Wtedy A.\( m=-2 \) B.\( m=0 \) C.\( m=2 \) D.\( m=3 \) CDla każdego kąta ostrego \(\alpha \) wyrażenie \(\sin^{2} \alpha +\sin^{2} \alpha \cdot \cos^{2}\alpha + \cos^{4}\alpha\) jest równe A.\( 2\sin^{2} \alpha \) B.\( 2\cos^{2}\alpha \) C.\( 1 \) D.\( 2 \) CKąt \(\alpha \) jest ostry i \(\sin \alpha =\frac{1}{3}\). Wartość wyrażenia \(1+\operatorname{tg} \alpha \cdot \cos \alpha \) jest równa A.\( \frac{4}{3} \) B.\( \frac{11}{9} \) C.\( \frac{17}{9} \) D.\( \frac{11}{3} \) AZbiorem wartości funkcji \(f\) jest przedział A.\( \langle -3,5 \rangle \) B.\( \langle -6,7 \rangle \) C.\( \langle 0,6 \rangle \) D.\( \langle -5,8 \rangle \) APrzedziałem, w którym funkcja \(f\) przyjmuje tylko wartości ujemne, jest A.\( \langle 5,0 \rangle \) B.\( ( 5,7 \rangle \) C.\( \langle 0,7 \rangle \) D.\( \langle -6,5 \rangle \) BFunkcja \(g\) jest określona wzorem A.\( g(x)=f(x-1) \) B.\( g(x)=f(x)-1 \) C.\( g(x)=f(x+1) \) D.\( g(x)=f(x)+1 \) BPunkt \(O\) jest środkiem okręgu. Kąt \(\alpha\), zaznaczony na rysunku, ma miarę A.\( 50^\circ \) B.\( 45^\circ \) C.\( 25^\circ \) D.\( 20^\circ \) CIloczyn wielomianów \(2x-3\) oraz \(-4x^2-6x-9\) jest równy A.\( -8x^3+27 \) B.\( -8x^3-27 \) C.\( 8x^3+27 \) D.\( 8x^3-27 \) AProstokąt \(ABCD\) o przekątnej długości \(2\sqrt{13}\) jest podobny do prostokąta o bokach długości \(2\) i \(3\). Obwód prostokąta \(ABCD\) jest równy A.\( 10 \) B.\( 20 \) C.\( 5 \) D.\( 24 \) BKosinus kąta ostrego rombu jest równy \(\frac{\sqrt{3}}{2}\), bok rombu ma długość \(3\). Pole tego rombu jest równe A.\( \frac{9}{2} \) B.\( \frac{9\sqrt{3}}{4} \) C.\( \frac{9\sqrt{3}}{2} \) D.\( 6 \) APole powierzchni całkowitej sześcianu jest równe \(12\). Suma długości wszystkich krawędzi tego sześcianu jest równa A.\( 12\sqrt{2} \) B.\( 8\sqrt{2} \) C.\( 6\sqrt{2} \) D.\( 3\sqrt{2} \) ACiąg \(\left ( {a}_{n} \right )\) określony jest wzorem \({a}_{n}=-2+\frac{12}{n}\) dla \(n \ge 1 \). Równość \( {a}_{n}=4 \) zachodzi dla A.\( n=2 \) B.\( n=3 \) C.\( n=4 \) D.\( n=5 \) AFunkcja \(f(x)=3x(x^2+5)(2-x)(x+1)\) ma dokładnie miejsca zerowe. miejsca zerowe. miejsca zerowe. miejsc zerowych. BWskaż równanie prostej, której fragment przedstawiony jest na poniższym wykresie A.\( x-2y-4=0 \) B.\( x+2y+4=0 \) C.\( x-2y+4=0 \) D.\( x+2y-4=0 \) DPrzyprostokątne w trójkącie prostokątnym mają długości \(1\) oraz \(\sqrt{3}\). Najmniejszy kąt w tym trójkącie ma miarę A.\( 60^\circ \) B.\( 30^\circ \) C.\( 45^\circ \) D.\( 15^\circ \) BDany jest ciąg arytmetyczny \((a_n)\) w którym różnica \(r=-2\) oraz \(a_{20 }=17\). Wówczas pierwszy wyraz tego ciągu jest równy A.\( 45 \) B.\( 50 \) C.\( 55 \) D.\( 60 \) CW ciągu geometrycznym \((a_n)\) pierwszy wyraz jest równy \(\frac{9}{8}\), a czwarty wyraz jest równy \(\frac{1}{3}\). Wówczas iloraz \(q\) tego ciągu jest równy A.\( q=\frac{1}{3} \) B.\( q=\frac{1}{2} \) C.\( q=\frac{2}{3} \) D.\( q=\frac{3}{2} \) CWyniki sprawdzianu z matematyki są przedstawione na poniższym diagramie. Średnia ocen uzyskanych przez uczniów z tego sprawdzianu jest równa A.\( 2 \) B.\( 3 \) C.\( 3{,}5 \) D.\( 4 \) CObjętość stożka o wysokości \(h\) i promieniu podstawy trzy razy mniejszym od wysokości jest równa A.\( \frac{1}{9}\pi h^2 \) B.\( \frac{1}{27}\pi h^2 \) C.\( \frac{1}{9}\pi h^3 \) D.\( \frac{1}{27}\pi h^3 \) DRzucamy trzykrotnie symetryczną monetą. Prawdopodobieństwo, że w trzecim rzucie wypadnie orzeł jest równe A.\( \frac{1}{4} \) B.\( \frac{3}{8} \) C.\( \frac{1}{2} \) D.\( \frac{3}{4} \) CDana jest prosta \(l\) o równaniu \(y=-\frac{2}{5}x\). Prosta \(k\) równoległa do prostej \(l\) i przecinająca oś \(Oy\) w punkcie o współrzędnych \((0,3)\) ma równanie A.\( y=-0{,}4x+3 \) B.\( y=-0{,}4x-3 \) C.\( y=2{,}5x+3 \) D.\( y=2{,}5x-3 \) ALiczba \(\log4+\log5-\log2\) jest równa A.\( 10 \) B.\( 2 \) C.\( 1 \) D.\( 0 \) CRozwiąż równanie \(3x^3-4x^2-3x+4=0\).\(x=-1\) lub \(x=1\) lub \(x=\frac{4}{3}\)Kąt \(\alpha\) jest ostry i \(\cos\alpha = \frac{\sqrt{7}}{4}\). Oblicz wartość wyrażenia \(2+\sin^3\!\alpha +\sin\alpha \cdot \cos^2\!\alpha\).\(2\frac{3}{4}\)Oblicz, ile jest liczb naturalnych czterocyfrowych, w których cyfra jedności jest o \(3\) większa od cyfry setek.\(630\)Wykaż, że liczba \((1+2013^2)(1+2013^4)\) jest dzielnikiem liczby: \(1+2013+2013^2+2013^3+2013^4+2013^5+2013^6+2013^7\). Nieskończony ciąg geometryczny \((a_n)\) jest określony wzorem \(a_n=7\cdot 3^{n+1}\), dla \(n\ge 1\). Oblicz iloraz \(q\) tego ciągu.\(q=3\)Podstawą graniastosłupa \(ABCDEFGH\) jest prostokąt \(ABCD\) (zobacz rysunek), którego krótszy bok ma długość \(3\). Przekątna prostokąta \(ABCD\) tworzy z jego dłuższym bokiem kąt \(30^\circ\). Przekątna \(HB\) graniastosłupa tworzy z płaszczyzną jego podstawy kąt \(60^\circ\). Oblicz objętość tego graniastosłupa. \(V=162\)Grupa znajomych wykupiła wspólnie dostęp do Internetu na okres jednego roku. Opłata miesięczna wynosiła \(120\) złotych. Podzielono tę kwotę na równe części, by każdy ze znajomych płacił tyle samo. Po upływie miesiąca do grupy dołączyły jeszcze dwie osoby i wówczas opłata miesięczna przypadająca na każdego użytkownika zmniejszyła się o \(5\) złotych. Ile osób liczyła ta grupa w pierwszym miesiącu użytkowania Internetu?\(6\)Wierzchołki trapezu \(ABCD\) mają współrzędne: \(A=(-1,-5)\), \(B=(5, 1)\), \(C=(1, 3)\), \(D=(-2, 0)\). Napisz równanie okręgu, który jest styczny do podstawy \(AB\) tego trapezu, a jego środek jest punktem przecięcia się prostych zawierających ramiona \(AD\) oraz \(BC\) trapezu \(ABCD\).\((x+3)^2+(y-5)^2=72\) Zad. 10 (1 pkt) (czerwiec 2022 - zad. 2) Liczba 2 −3·3 ·40 2−1 ·3−4 ·4−1 jest równa A. 1 B. 3 C. 24 D. 48 Zad. 11 (1 pkt) (maj 2022 - zad. 1) Liczba √ 2 8 −3 2 2 jest równa A. 2 B. 1 C. 26 D. 14 Zad. 12 (1 pkt) (maj 2022 - zad. 5) Liczba 32+1 4 jest równa A. 32 ·4 √ 3 B. 4 33 C. 32 + 4 √ 3 D. 32 + 34 Zad. 13 (1 pkt Strona głównaZadania maturalne z biologiiMatura Czerwiec 2013, Poziom rozszerzony (Formuła 2007) Kategoria: Układ pokarmowy i żywienie Typ: Podaj i uzasadnij/wyjaśnij Na schemacie przedstawiono jeden z etapów trawienia cukrów w przewodzie pokarmowym człowieka. a)Podaj dwie możliwe lokalizacje tego etapu trawienia w przewodzie pokarmowym człowieka oraz odpowiednie nazwy enzymów biorących w nim udział. Miejsce trawienia Nazwa enzymu Miejsce trawienia Nazwa enzymu b)Na podstawie analizy schematu uzasadnij kataboliczny charakter trawienia polisacharydów, np. skrobi. Rozwiązanie a)(0-2)Poprawne odpowiedzi: jama ustna – amylaza ślinowa dwunastnica / jelito cienkie – amylaza trzustkowa Za poprawne podanie miejsca trawienia cukrów w przewodzie pokarmowym wraz z odpowiednią nazwą enzymu – po 1 pkt b)(0-1)Poprawna odpowiedź: Substratem trawienia jest związek o bardziej złożonej budowie (skrobia), a jego produktami są związki prostsze (dekstryny i maltoza). Za prawidłowe uzasadnienie katabolicznego charakteru trawienia, uwzględniające złożoność budowy polisacharydów / skrobi / substratów oraz prostszą budowę produktów trawienia / maltozy i dekstryn – 1 pkt
Egzamin zawodowy: INF.04 Zawód: technik programista Arkusz egzaminacyjny: pisemny i praktyczny Rok: 2022 Uwagi: Pisemne egzaminy z tzw. kwalifikacji trzyliterowych są rozwiązywane na komputerach. To oznacza, że nie ma możliwości publikacji przykładowego egzaminu pisemnego. Jeśli chcesz zobaczyć jakie przykładowe pytania mogą pojawić się na egzaminie, to polecam sprawdzić
Szybka nawigacja do zadania numer: 5 10 15 20 25 30 .Wskaż rysunek, na którym zaznaczony jest zbiór wszystkich liczb rzeczywistych spełniających nierówność \(|x + 4| \lt 5\) ALiczby \(a\) i \(b\) są dodatnie oraz \(12\%\) liczby \(a\) jest równe \(15\%\) liczby \(b\). Stąd wynika, że \(a\) jest równe A.\( 103\% \) liczby\(b\) B.\( 125\% \) liczby\(b\) C.\( 150\% \) liczby\(b\) D.\( 153\% \) liczby\(b\) BLiczba \(\log 100-\log_{2}8\) jest równa A.\( -2 \) B.\( -1 \) C.\( 0 \) D.\( 1 \) BRozwiązaniem układu równań \(\begin{cases} 5x+3y=3\\ 8x-6y=48 \end{cases} \) jest para liczb A.\( x=-3 \) i \(y=4\) B.\( x=-3 \) i \(y=6\) C.\( x=3 \) i \(y=-4\) D.\( x=9 \) i \(y=4\) CPunkt \(A=(0, 1)\) leży na wykresie funkcji liniowej \(f(x)=(m-2)x+m-3\). Stąd wynika, że A.\( m=1 \) B.\( m=2 \) C.\( m=3 \) D.\( m=4 \) DWierzchołkiem paraboli o równaniu \(y=-3(x-2)^2+4\) jest punkt o współrzędnych A.\( (-2, -4) \) B.\( (-2, 4) \) C.\( (2, -4) \) D.\( (2, 4) \) DDla każdej liczby rzeczywistej \(x\), wyrażenie \(4x^2-12x+9\) jest równe A.\( (4x+3)(x+3) \) B.\( (2x-3)(2x+3) \) C.\( (2x-3)(2x-3) \) D.\( (x-3)(4x-3) \) CProsta o równaniu \(y=\frac{2}{m}x+1\) jest prostopadła do prostej o równaniu \(y=-\frac{3}{2}x-1\). Stąd wynika, że A.\( m=-3 \) B.\( m=\frac{2}{3} \) C.\( m=\frac{3}{2} \) D.\( m=3 \) DNa rysunku przedstawiony jest fragment wykresu pewnej funkcji liniowej \(y=ax+b\). Jakie znaki mają współczynniki \(a\) i \(b\)? A.\(a\lt 0\) i \(b\lt 0\) B.\(a\lt 0\) i \(b>0\) C.\(a>0\) i \(b\lt 0\) D.\(a>0\) i \(b>0\) ANajmniejszą liczbą całkowitą spełniającą nierówność \(\frac{x}{2}\le \frac{2x}{3}+\frac{1}{4}\) jest A.\( -2 \) B.\( -1 \) C.\( 0 \) D.\( 1 \) BNa rysunku 1 przedstawiony jest wykres funkcji \(y=f(x)\) określonej dla \(x\in [-7, 4]\). Rysunek 2 przedstawia wykres funkcji A.\( y=f(x+2) \) B.\( y=f(x)-2 \) C.\( y=f(x-2) \) D.\( y=f(x)+2 \) CCiąg \((27, 18, x+5)\) jest geometryczny. Wtedy A.\( x=4 \) B.\( x=5 \) C.\( x=7 \) D.\( x=9 \) CCiąg \((a_n)\) określony dla \(n\ge 1\) jest arytmetyczny oraz \(a_3=10\) i \(a_4=14\). Pierwszy wyraz tego ciągu jest równy A.\( a_1=-2 \) B.\( a_1=2 \) C.\( a_1=6 \) D.\( a_1=12 \) BKąt \(\alpha \) jest ostry i \(\sin \alpha =\frac{\sqrt{3}}{2}\). Wartość wyrażenia \(\cos^2\alpha -2\) jest równa A.\( -\frac{7}{4} \) B.\( -\frac{1}{4} \) C.\( \frac{1}{2} \) D.\( \frac{\sqrt{3}}{2} \) AŚrednice \(AB\) i \(CD\) okręgu o środku \(S\) przecinają się pod kątem \(50^\circ\) (tak jak na rysunku). Miara kąta \(\alpha \) jest równa A.\( 25^\circ \) B.\( 30^\circ \) C.\( 40^\circ \) D.\( 50^\circ \) ALiczba rzeczywistych rozwiązań równania \((x+1)(x+2)(x^2+3)=0\) jest równa A.\( 0 \) B.\( 1 \) C.\( 2 \) D.\( 4 \) CPunkty \(A=(-1, 2)\) i \(B=(5, -2)\) są dwoma sąsiednimi wierzchołkami rombu \(ABCD\). Obwód tego rombu jest równy A.\( \sqrt{13} \) B.\( 13 \) C.\( 676 \) D.\( 8\sqrt{13} \) DPunkt \(S=(-4, 7)\) jest środkiem odcinka \(PQ\), gdzie \(Q=(17, 12)\). Zatem punkt \(P\) ma współrzędne A.\( P=(2, -25) \) B.\( P=(38, 17) \) C.\( P=(-25, 2) \) D.\( P=(-12, 4) \) COdległość między środkami okręgów o równaniach \((x+1)^2+(y-2)^2=9\) oraz \(x^2+y^2=10\) jest równa A.\( \sqrt{5} \) B.\( \sqrt{10}-3 \) C.\( 3 \) D.\( 5 \) ALiczba wszystkich krawędzi graniastosłupa jest o \(10\) większa od liczby wszystkich jego ścian bocznych. Stąd wynika, że podstawą tego graniastosłupa jest BPole powierzchni bocznej stożka o wysokości \(4\) i promieniu podstawy \(3\) jest równe A.\( 9\pi \) B.\( 12\pi \) C.\( 15\pi \) D.\( 16\pi \) CRzucamy dwa razy symetryczną sześcienną kostką do gry. Niech \(p\) oznacza prawdopodobieństwo zdarzenia, że iloczyn liczb wyrzuconych oczek jest równy \(5\). Wtedy A.\( p=\frac{1}{36} \) B.\( p=\frac{1}{18} \) C.\( p=\frac{1}{12} \) D.\( p=\frac{1}{9} \) BLiczba \(\frac{\sqrt{50}-\sqrt{18}}{\sqrt{2}}\) jest równa A.\( 2\sqrt{2} \) B.\( 2 \) C.\( 4 \) D.\( \sqrt{10}-\sqrt{6} \) BMediana uporządkowanego niemalejąco zestawu sześciu liczb: \(1, 2, 3, x, 5, 8\) jest równa \(4\). Wtedy A.\( x=2 \) B.\( x=3 \) C.\( x=4 \) D.\( x=5 \) DObjętość graniastosłupa prawidłowego trójkątnego o wysokości \(7\) jest równa \(28\sqrt{3}\) . Długość krawędzi podstawy tego graniastosłupa jest równa A.\( 2 \) B.\( 4 \) C.\( 8 \) D.\( 16 \) BRozwiąż równanie \(x^3+2x^2-8x-16=0\).\(x=-2\) lub \(x=2\sqrt{2}\) lub \(x=-2\sqrt{2}\)Kąt \(\alpha \) jest ostry i \(\sin \alpha =\frac{\sqrt{3}}{2}\). Oblicz wartość wyrażenia \(\sin^2\alpha - 3\cos^2\alpha \).\(0\)Udowodnij, że dla dowolnych liczb rzeczywistych \(x, y, z\) takich, że \(x+y+z=0\), prawdziwa jest nierówność \(xy+yz+zx\le 0\).Możesz skorzystać z tożsamości \((x+y+z)^2=x^2+y^2+z^2+2xy+2xz+2yz .\)Na rysunku przedstawiony jest wykres funkcji \(f(x)\) określonej dla \(x\in [-7, 8]\). Odczytaj z wykresu i zapisz: a) największą wartość funkcji \(f\), b) zbiór rozwiązań nierówności \(f(x)\lt 0\).a) \(7\); b) \(x\in (-3;5)\)Rozwiąż nierówność \(2x^2-7x+5 \ge 0\).\(x\in (-\infty ;1\rangle \cup \langle 2{,}5; +\infty )\)Wykaż, że liczba \(6^{100}-2 \cdot 6^{99}+10 \cdot 6^{98}\) jest podzielna przez \(17\).Punkt \(S\) jest środkiem okręgu opisanego na trójkącie ostrokątnym \(ABC\). Kąt \(ACS\) jest trzy razy większy od kąta \(BAS\), a kąt \(CBS\) jest dwa razy większy od kąta \(BAS\). Oblicz kąty trójkąta \(ABC\). \(45^\circ , 60^\circ , 75^\circ \)Pole podstawy ostrosłupa prawidłowego czworokątnego jest równe \(100\) cm2, a jego pole powierzchni bocznej jest równe \(260\) cm2. Oblicz objętość tego ostrosłupa.\(V=400\)Dwa miasta łączy linia kolejowa o długości \(336\) kilometrów. Pierwszy pociąg przebył tę trasę w czasie o \(40\) minut krótszym niż drugi pociąg. Średnia prędkość pierwszego pociągu na tej trasie była o \(9\) km/h większa od średniej prędkości drugiego pociągu. Oblicz średnią prędkość każdego z tych pociągów na tej trasie.\(v_1=72\) km/h, \(v_2=63\) km/h Matemaks. 384K subscribers. Subscribe. 128. 48K views 9 years ago Matura z matematyki - 4 czerwiec 2013. Rozwiązania wszystkich zadań znajdziesz na:
Korepetycje u autora przez internet! Szukasz korepetycji na najwyższym poziomie bez wychodzenia z domu? Przydatne materiały Kontakt z nami Napisz wiadomość Kąt \( \alpha \) jest ostry i \( \sin \alpha = \frac{\sqrt{3}}{3} \). Wtedy wartość wyrażenia \( 2cos^2\alpha - 1 \) jest równa A. \( 0 \) B. \( \frac{1}{3} \) C. \( \frac{5}{9} \) D. \( 1 \) Wartość \( \cos^2\alpha \) policzymy wykorzystując jedynkę trygonometryczną, czyli \[ \class{color1}{\text{sin}}^2\class{color2}{\alpha}+\class{color1}{\text{cos}}^2\class{color2}{\alpha}=1 \] Podstawmy za \( \sin \alpha \) wartość z treści zadania, czyli \( \frac{\sqrt{3}}{3} \) i wyliczmy \( \cos^2\alpha \). \[ \left(\frac{\sqrt{3}}{3}\right)^2 + \cos^2\alpha = 1 \\ \frac{\sqrt{3}^2}{3^2} + \cos^2\alpha = 1 \\ \begin{matrix} \frac{3}{9} + \cos^2\alpha = 1 & / - \frac{3}{9} \end{matrix} \\ \cos^2\alpha = 1- \frac{3}{9} = \frac{6}{9}=\frac{2}{3} \] Podstawmy do wyrażenia z zadania \( 2\cos^2\alpha - 1 \) wyliczoną wartość i wyliczmy \[ 2\cos^2\alpha - 1 = 2\cdot\frac{2}{3} - 1 = \frac{4}{3} - 1 = \frac{4}{3}-\frac{3}{3}=\\ \frac{4-3}{3}=\frac{1}{3} \] Prawidłowa odpowiedź to odpowiedź B. Drukuj Polub nas Rozwijaj swoje SocialMedia! Skorzystaj z Naszego nowego Projektu! Kup Like na Facebook, Instagram, Youtube!
czerwiec 2013: Egzamin zawodowy E.12 2013 czerwiec: Podziel się tym arkuszem ze znajomymi: Matura poziom rozszerzony: Matematyka – matura poziom rozszerzony. 30 sierpnia, 2018 6 sierpnia, 2019 Zadanie 24 (0-1) Abiturient jednego z liceów zestawił w tabeli oceny ze swojego świadectwa ukończenia szkoły. Ocena65432Liczba ocen23551 Mediana przedstawionego zestawu danych wynosi: Źródło CKE - Arkusz egzaminacyjny 2017/2018 - Matura sierpień poziom podstawowy Analiza: Odpowiedź: Matura - poziom podstawowy Egzaminy maturalne - archiwum 2017 Zadania z matury podstawowej z matematyki 2016 są obecnie wprowadzane na stronę. W niedługim czasie udostępnione zostaną odpowiedzi i analizy zadań. Zadanie z odpowiedzią bez analizy Zadanie z analizą i odpowiedzią Matura 2018 - poziom podstawowy Matura 2022 - poziom podstawowy 2022 Zadanie z odpowiedzią bez analizy Zadanie z analizą i odpowiedzią Matura 2020 - poziom podstawowy Zadanie z odpowiedzią - bez analizy Zadanie z analizą i odpowiedzią Matura 2019 - poziom podstawowy Zadanie z odpowiedzią - bez analizy Zadanie z analizą i odpowiedzią Matura 2021 - poziom podstawowy Maj 2021 Zadanie z odpowiedzią - bez analizy Zadanie z analizą i odpowiedzią
Matura: CKE Arkusz maturalny: matematyka podstawowa Rok: 2013. Arkusz PDF i odpowiedzi: Matura próbna matematyka – maj 2013 – poziom podstawowy.
saMr. 48 187 225 109 345 404 188 105 425

matura czerwiec 2013 zad 24